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Abstract. A Landau-Ginzburg formulation is presented to describe a series of super- 
conducting islands interacting via Josephson weak links in the presence of a magnetic field. 
It is demonstrated that the structure of superconducting islands (and the lattice of magnetic 
vortices), described by the order parameter’s envelope, may be commensurate or incom- 
mensurate with a superimposed array of weak links via the order parameter’s phase for each 
island. A discussion is provided in terms of a Kosterlitz-Thouless transition in the latter 
structure. A description of space modulation of these phases is given through sine-Gordon 
equations. 

1. Introduction 

Since the discovery of high-temperature superconductors by Bednorz and Muller (1986) 
a substantial amount of experimental knowledge about these ceramic superconductors 
has been accumulated leading to further progress in obtaining higher transition tem- 
peratures (Ehrenreich and Turnbull 1989). Proliferation of theoretical models has also 
been in evidence but so far there appears to be no consensus on the nature and type of 
mechanisms responsible for these phenomena. There are a number of intriguing features 
that appear to be in contrast with those of low-temperature standard superconductors. 
Obviously, the 1-2-3 compounds (Y-Ba-Cu-0) and La-R-Cu-0 materials possess a 
number of specific features. Nevertheless, the main qualitative behaviour is quite com- 
mon in both cases. In both these compounds it is crucial to emphasise the effects leading 
to the existence of oxygen vacancies, which seem to be mainly concentrated in the Cu- 
0 planes. Below the critical temperature, they have been found to form a regular lattice 
(Inoue et a1 1987, Aligia et a1 1988, Schmahl et a1 1988). It is also important to note that 
the phase diagrams of these compounds have regions of an insulating antiferromagnetic 
phase (Hass 1989) as well as a spin glass phase (Aharony eial1988). It appears that, due 
to doping, mobile charge carriers are first produced, which may subsequently form a 
conduction band and, eventually, through strong interactions, a superconducting phase. 
Hall effect measurements unambiguously indicate that these charge carriers are holes 
(Ong et a1 1987, Uchida et a1 1987) in most of the compounds investigated. 

Very important differences between the ceramic and standard superconductors are 
exemplified by the characteristic length scales associated with the two types of system. 
In the new superconductors the coherence length in the ab plane is 230-50 A, while 
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along the c axis it may be 5-8 A or less, and the penetration depth varies from 1500 to 
2500 8, (Aeppli et a1 1987). In standard superconductors the coherence length is much 
longer and the penetration depth substantially shorter (White and Geballe 1979). The 
Meissner effect experiments seem to reveal that the new superconductors are not ideal 
diamagnets but expel up to 80% of the external magnetic field, thus indicating that the 
superconducting phase is either a mixture of coexisting phases or a modulated type of 
superconducting phase in which the order parameter is highly position dependent 
(Golovashkin 1987). In addition to the levitation effects found in standard super- 
conductors, high-T, ceramics exhibit effects of suspension in a magnetic field (Gregory 
and Johnson 1988). This indicates that the partial penetration inside the sample may be 
thermodynamically favourable and such a state may have inherent stability. 

Furthermore, a number of structural effects are worth mentioning. The ceramic 
superconductors are highly anisotropic with a copper-oxygen structure giving rise to 
either two-dimensional rectangular lattices or a quasi-one-dimensional chain-like struc- 
ture in other layers (Beyers and Shaw 1989). As a consequence of the anisotropy, 
much lower conductivity along the c axis is exhibited in both the normal and the 
superconducting state. Thus, it is believed that the planes formed by Cu and 0 are 
responsible for the superconducting properties of the crystals. Other structural anom- 
alies are also present. These are evident from experiments that measure an anomalous 
thermal expansion coefficient as a function of temperature, strong pressure dependence 
of the critical temperature in the a-b plane and a nearly negligible effect along the c axis 
(Karpinski et a1 1989, Golovashkin 1987). The granular nature of the new super- 
conductors can be seen through a number of properties: anomalous voltage excursions 
as a function of temperature and magnetic field (Cai et a1 1987), logarithmic time decays 
of magnetisation (Mota et al1988), flux trapping (Muller eta1 1987) and tails of resistivity 
versus temperature due to boundary resistance between grains (Tsuneto 1988). The list 
of experimental facts and observations is very long at the present time and for a more 
detailed account the reader is referred to extensive reviews. 

Based on the above observations we wish to explore the following possibility for the 
onset of bulk coherence. The effect appears to be gradual and associated with a broad 
(over 20-30 K) temperature range over which resistivity drops to zero. The theoretical 
model that we wish to put forward is based on the existence of and the role played by 
the oxygen vacancies. The depletion or excess of oxygen ions first of all leads to the 
creation of additional charge carriers (Dharma-Wardana 1987). Since the latter are holes 
with a high effective mass, compared with that of electrons, the degree of localisation 
of excess charge is expected to be much greater than in standard superconductors. 
Moreover, the underlying electrostatic potential of the crystal lattice may play a greater 
role in such effects as pinning. 

Our initial step is to follow the ideas of Deutscher and Muller (1987) and envisage 
regions of a size, at least initially, smaller than the mean grain size. Their average size 
and spacing can be affected by such factors as temperature, impurities, magnetic fields 
and currents. We shall investigate these factors separately in later sections. 

2. Themodel 

Deutscher and Muller (1987) pioneered the investigations into glassy behaviour of high- 
T, superconductors. They pointed to a number of properties that appear to be due to a 
glassy state: microwave response of point contacts, extrinsic critical currents in single 
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crystals, gapless characteristics of tunnelling spectroscopy results, etc. They proposed a 
model based on the typical Hamiltonian for superconductor-insulator-superconductor 
(SIS) junctions, i.e. 

Ho = -2 J ,  COS(rPf - rP, -AI />  (1) 
'/ 

where A ,  is a phase factor due to the presence of external magnetic fields which is 
responsible for randomness and frustration and ql is the phase of the local order 
parameter. Here, the coupling constant for SIS structures is given by the Ambegaokar- 
Baratoff (1963) formula 

where A ( T )  is the energy gap, p is the normal state resistivity and d, is the island-island 
separation. They stress that behaviour consistent with that predicted by the model has 
been seen in the I-V characteristics of such Josephson junctions (Esteve et a1 1987). 
They also emphasise that the observed logarithmic time dependence of magnetisation 
decay confirms the glassy state hypothesis. A very crucial role in the formation of a 
network of coupled superconducting domains is played by the short coherence length. 
Subsequently, Sahling and Sahling (1989) observed glassy behaviour in 1-2-3 com- 
pounds through heat release experiments with a broad distribution of relaxation times 
typical of amorphous solids and structural glasses. A very strong argument in support 
of the glassy behaviour model has been recently given by Koziol et a1 (1989) who 
maintain that, in addition to T,, there is another transition temperature Tj related to the 
occurrence of bulk superconductivity induced by Josephson junction interactions. Below 
TJ quantum phases of local order parameters freeze and the Hamiltonian, equation ( l ) ,  
becomes inadequate to describe the system. They also maintain that the presence of 
frustration results in a pinning potential. Energy barriers must be overcome in order to 
generate flux motion. The existence of Tj and its smooth decrease with the applied field 
H has been experimentally demonstrated by Barbara et a1 (1988) through measurements 
of the imaginary part of the susceptibility function. 

A very elaborate calculation of a granular model of a superconductor based on (1) 
was recently published by Fishman (1989) who concentrated on phase fluctuations using 
a 1/z expansion technique and concluded that correlations of phase fluctuations enhance 
short-range order of granular superconductors. 

To balance this, so far one-sided, discussion on the merits of the glassy model we 
should mention opposite views expressed by Malozemoff et a1 (1988) who believe that 
a flux pinning picture rather than the spin glass one is more adequate to explain remanent 
magnetic moment measurements. They do admit, however, that a strong glassy flux 
pinning is also possible to explain the observations; this seems to be confirmed by Koziol 
et a1 (1989). In fact, it has been experimentally confirmed that boundaries between grains 
act like Josephson junctions (Chaudhari et a1 1988). In this connection Stankowski et a1 
(1987) found, through EPR studies, that Josephson loops of sizes in the range of 0.65- 
0.81 pm should exist in the 1-2-3 compound; in order to explain the observed oscillations 
in the spectra. Our model will be principally based on the Landau-Ginzburg (LG) theory 
since, in the past, this has provided a unified and extensive description of various aspects 
of the superconducting phenomenon. We do not intend to speculate on the particular 
mechanisms that may bring about superconductivity within each island but, rather, point 
to the importance of short-range interactions which may, at least initially, play the 
dominant role. 
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The LG model has already been rather fruitfully employed in the investigations of 
various aspects of high-temperature superconductivity such as, e.g., twinning (Danilov 
and Safonov 1988), multilayered structures (Eab and Tang 1988, Theodorakis and 
Tesanovic 1988, Tarento 1988), coupled order parameters (Chela-Flores et a1 1988, 
Choy etaZl988) or even the connection to the RVB model (Nakamura and Matsui 1988). 
In addition, a direct connection has been recently found between a microscopic second- 
quantised Hamiltonian and the LG order parameter picture (Tuszynski and Dixon 1989a, 
b). Thus, our present modelling may help in future ab initio calculations. 

The theoretical framework within which we construct our model involves assigning 
a complex superconducting wavefunction as the (localised) order parameter yl(rl) for 
each island, centred at the position Y,, with its own LG free-energy expansion. The islands 
are then allowed to interact via weak-link Josephson junctions using the Lawrence- 
Doniach (LD) (1971) expression which is slightly more general than the form in (1). We 
will subsequently discuss the minimisation of the postulated free energy under various 
distinct conditions, such as the presence or absence of magnetic fields and the effect of 
superconducting currents, in order to find the critical values of these two quantities. We 
will also draw extensively on a number of interesting connections linking the X Y  model, 
the Kosterlitz-Thouless (KT) model and the LG model in the continuum limit. In contrast 
to similar analyses done in the past, we intend to concentrate on non-linear aspects 
inherent in the model. 

The starting point for our development is the adoption of the idea of Deutscher and 
Muller (1987) that domains of superconductivity are being formed throughout the 
sample. These regions of superconductivity may have finite spatial dimensions and can 
be separated by regions of normal phase. We shall refer to these superconducting 
domains as islands whose spatial array structure can perhaps be visualised as being 
stabilised by the oxygen defect/excess (Dharma-Wardana 1987). Since, at least initially, 
i.e. close to the onset of superconductivity, these islands are well separated, the inter- 
actions between them are rather weak and may be modelled using the weak-link approxi- 
mation as in arrays of Josephson junctions (Martinoli et aZl987). 

Based on the general information above we postulate to represent the free-energy 
density of a ceramic material, in the vicinity of its critical temperature, as the sum of 
individual LG terms for each of the islands i with interactions between them in the LD 
form. We realise that the LD term has been initially employed to describe interactions 
between superconducting layers. However, it is applicable also to arrays of Josephson 
junctions within a plane (Raboutou et a1 1987, Choi and Doniach 1985, Shih et a1 1984). 
In general, it appears in situations where superconducting grains are well separated by 
regions of normal order. The free energyfis therefore represented as the sum of three 
terms below 

f=f1 + f 2  + f 3  (3) 
where 

and 

f3 = H 2 / 8 n  (3c) 
where the first termf,, is a standard Ginzburg-Landau (1950) free-energy expansion for 
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the local order parameter characterising the nth island. The spatial extent of the order 
parameter y,, = V n ( r n )  is restricted to be within the distance between the impurities 
and is therefore dependent on doping concentration, x. The coefficient A4 in f l  is 
assumed to be only weakly temperature dependent so we can take it to be constant. The 
second term, f , ,  i.e. in (3b) ,  is in the form of the LD interaction where the path integral 
involves a trajectory linking the centres of the two islands n and 1 and A is the spatially 
dependent vector potential. The parameter b,, is a distance-dependent intergrain coup- 
ling constant. Following Landau and Lifshitz (1980) we assume that A2 = a(T - Tc) 
where a is positive and we assume this is independent of the particular island. In the 
interaction terms, i.e. f2 ,  the temperature dependence would usually enter through an 
entropy term due to the possible distributions of vortices. However, we shall assume 
initially that the vortices are pinned in such a way thatf, becomes virtually temperature 
independent. 

To simplify the problem we make a number of physically motivated approximations. 
First, representing V n  in the usual way as V ,  = qn  exp(icpn) we assume the amplitudes 
q,,, for each island, to be virtually identical, i.e. q n  = qm = q ,  but not necessarily 
homogeneous, resulting in a sort of periodicity requirement. Thus, both q, and cp,, are 
seen as localised functions of their position variable r,  (centred at different points in 
space) which tend to their asymptotic values on the nth island’s boundary. We also 
assume that only the nearest neighbour islands are effectively interacting and that the 
phase difference between them is sufficiently small to invoke the so-called weak-link 
approximation. As a consequence of these assumptions the free energy becomes 

2e 
f 2  = bq2 [ 1 - cos(p? - cp I - g J‘ A dl) ] 

(n.0 n 

where b is the value of b,, for nearest neighbour interactions and the sum over (n ,  I )  is 
for nearest neighbours only. Minimising the free-energy functional 

F =  J (fl + f 2  + f 3 ) d 3 r  

with respect to q ,  cp andA we obtain 

+ 2bq 2 [ 1 - cos c p n  - cp[ - E ln‘A - dl)] 
(n.0 
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6F 4e2A fie 2e 
- = 0 = -Nq? - - q 2  Vq,, - -bq2 
6A m*c2 m*c ,, f i C  

where d,,/ is the unit vector from site n to site 1. 

way that V .A = 0. In addition, we replace the integral 
In order to simplify this set of coupled equations we can choose a gauge in such a 

- 1 A a d l  2e 
hC 

by a function q o ( r )  whose numerical value depends on the distance between islands as 
well as the nature of the magnetic field penetration. 

3. The approximation of non-interacting islands 

In order to understand properly the full complexity of the problem described by (6)- 
(8) we shall first briefly review the situation in the absence of interactions between 
superconducting islands, i.e. assume b = 0. Our interest here is in a small and isolated 
region of space where the superconducting order nucleates without the inclusion of 
interactions with other such domains of superconductivity. We assume here that these 
domains are sufficiently far apart and superconductivity weak enough to ignore any 
correlation effects between them. The two generic situations to consider in this context 
are the onset of superconductivity in a single island in the absence of external magnetic 
fields and the problem of magnetic field penetration of a superconducting domain. These 
two cases have been recently analysed in detail by Tuszynski and Dixon (1989a, b) and 
Vos et aZ(l990). As one of these papers has not, as yet, been published a short account 
of their main results is given below. The first case allows for either quasi-linear or 
cylindrical solutions of the equations of state assuming that the temperature is below T,. 
At and close to T = T, spiral order parameter structures can be found in addition to 
those above. Within this general description we also found two special forms of solution 
depending on the presence or absence of superconducting currents in the sample. The 
general form of the envelope represents an elliptic function whose type depends on the 
temperature region, the magnitude of the superconducting current and the sign of the 
effective mass m*. It is important to note that when m* > 0 the lowest-energy solution 
is a mean field separated by a gap from the next lowest state which is localised (either a 
‘kink’ for zero current or a ‘cusp’ otherwise). These solutions are then followed by a 
continuum of elliptic waves. On the other hand, when m* < 0, the situation is completely 
different and can be interpreted as a modulational instability-that is, the lowest-energy 
solution is a periodic function with the highest frequency and amplitude allowed by the 
crystal structure. An expression for the associated period /z has also been given in terms 
of the free-energy expansion coefficients and an integration constant. In general, this 
expression involves an elliptic integral. However, the periodicity of the ‘cut-off‘ solution 
(lowest energy) corresponds to twice the lattice spacing do of the oxygen vacancy 
network, Amin = 2 4 .  These solution forms happen to be asymptotically correct in the 
two-dimensional case. The behaviour of the solutions close to the centre of an island can 
be found by linearisation about the mean-field solution. It is worth emphasising that this 
approach also seems to predict the correct temperature dependence of the critical 
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current density J,(T) a ( T  - T,)3’3 in standard superconductors and gives a variety of 
possible forms of J,( T) for high-T, superconductors. 

The second case of magnetic field penetration is much more difficult to study using 
exact methods. Nevertheless, it has been possible to demonstrate the existence of quasi- 
linear and cylindrical solutions (vortices) for arbitrary tempratures below T, as well as 
spiral metastable solutions in the vicinity of T,. The quasi-linear solutions are generally 
expressed in terms of elliptic functions with the limiting cases of ‘bumps’ and ‘kinks’ 
referring to nucleation centres and magnetic field penetration, respectively. The physical 
interpretation of the elliptic-type solutions for both the order parameter’s envelope q 
and the vector potential A is the setting up of magnetic vortices in a periodic array with 
vortex cores coinciding with the envelope’s zeros with the intensity of the magnetic field 
decaying radially from their centres. The solutions discussed here are obtained in 
free space and boundary conditions may then be conveniently imposed to select such 
solutions that satisfy the desired boundary requirements. For detail calculations and 
analysis the reader is referred to the two papers mentioned above. 

4. Preliminary discussion of the role of island-island interactions 

In the previous section we have discussed the role of f l  and f3 assuming that the 
superconducting islands are either non-interacting or that there is only one such island 
in the system. In the present section we wish to address the question of the role played 
by termf2 responsible for island-island interactions. In the first instance we will simply 
review the theoretical results concerning the vortex dynamics in two-dimensional arrays 
of weak links as described by termf2 alone. In the next step we shall investigate the 
effective influence of island ordering on the remaining degrees of freedom. 

There exists a large body of literature that deals with the analysis of superconducting 
weak links based on the interaction energy of (5) (Martinoli et a1 (1987) and references 
therein). First of all, in zero magnetic field the nearest neighbour interaction energy 
between a pair of islands n and 1 is given by 

En/ = (hic(T)/2c)[l - COS(9l - 9Jl  (9) 

where i,( T )  is the critical current of the isolated junction in the absence of thermal 
fluctuations (directly proportional to the square of the order parameter’s envelope). It 
is most interesting that (9), when summed over i and j ,  maps directly onto the X Y  model 
for classical spins with a temperature-dependent exchange constant 7 = hi,( T)/2e. The 
latter model has been extensively studied by Kosterlitz and Thouless (1973). The main 
result of their analysis is the possibility of a new type of phase transition occurring at 
T = TJ given by 

Tj XJl1.12 kB. (10) 
With T, denoting the temperature at which a single island becomes superconducting, 
and, making an approximation consistent with the assumption made in (9) that 

ic(T) = i!?(T, - T )  (11) 

TJ = + cu>lTc (12) 

we find our expression giving TJ in terms of T,: 

where cu = (hi;)/(4.48e k B ) .  The choice of symbol TJ for the ordering transition tem- 
perature is dictated by the apparent similarity with the phenomenon discussed by Koziol 
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et a1 (1989). If CY is sufficiently large the two transitions may coincide at T = T,. The first 
transition leads to the nucleation of superconducting islands and the second to the 
creation of topological order in the phase of the order parameter. This latter situation 
is realised by the presence of bound-vortex-antivortex pairs separated by a distance r .  
Then the energy of a vortex-antivortex pair is given by KT as 

U(r)  = (hiC(T)/2e) ln(r/a). (13) 

Hence, above TJ the superconducting islands possess uncorrelated phases whereas below 
TJ their phase geometry can be described by a vortex-antivortex regular lattice structure, 
Note that the relationship in (13) implies that making b temperature dependent, so that 
b = P(T - T J ) ,  effectively incorporates the seemingly missing entropy term inf2 as can 
be seen from (10) and (11) of KT. It is also important to note that the periodicity of the 
vortex-antivortex array (based on the order parameter's phases rpi) and that of the island 
lattice structure (related to the order parameter envelope q) may not be the same as or 
even commensurate with each other as we shall explore later in the paper. As i,( 7') is a 
local current that is a decreasing function of r ,  U(r )  in (13) remains finite. Thus, our 
model is free from the undesired divergence of the flux energy. Although in their original 
paper KT precluded the application of their model to superconductors, their argument 
was based on two main assumptions. The first was the use of the mean-field description 
of the superconducting envelope and the second that the interaction referred to magnetic 
flux lines penetrating the superconducting phase. We hope to apply our approach to 
the new high-T, superconductors where the use of a mean-field description is highly 
questionable because of the short coherence length. The interaction term refers here, 
not to magnetic vortices, but rather the phases of the order parameter field rpi centred 
at different islands. In this respect this is similar to the earlier work on arrays of Josephson 
junctions (Martinoli et a1 1987). Furthermore, a similar picture has already been advo- 
cated for the explanation of glassy behaviour in high-T, superconductors (Cai et al1987, 
Tsaietall987, Schneideretall988, Morgensternetal1988, Kampf and Schon 1988, Sonin 
1988). Recently, Zwerger (1987a, b, 1988) studied networks of Josephson junctions 
including quantum fluctuations and dissipation and found the possibility of two super- 
conducting phases: one with long-range order and the other with local phase coherence. 

In the presence of a perpendicular magnetic field B the interaction energy of a pair 
of weak-linked islands is 

E,/ = (hic(T>/2e)[l - W V l  - V n  - An/)] (14) 

where A,/ is proportional to the line integral of the vector potential A from site n to site 
1. This form of interaction is isomorphic to a frustrated X Y  (spin glass) model with a 
number of interesting properties (Ebner and Stroud 1985). In particular, for a square 
lattice, the superconducting current distribution in the ground state consists of a series 
of staircase supercurrents (Hasley 1985). Moreover, the vortex lattice induced by the 
magnetic field interacts with the pinning potential created by the periodic array of 
islands. With the degree of frustration defined by CJ = @/ao, where @ is the magnetic 
flux for a unit cell and @,, is the superconducting flux quantum, there are competing 
periodicities related to the fixed array structure and the vortex structure determined by 
U .  This leads to a sequence of commensurate and incommensurate vortex phases. The 
former ones are characterised by the formation of a superlattice. At low temperatures 
the commensurate phases are pinned by the periodic potential due to the array structure, 
in contrast to the incommensurate phase in which the vortex lattice is free to slide. This 
latter property is characteristic of glassy behaviour which was attributed to high-T, 
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superconductors and discussed in the frame of the frustrated XY model by Morgenstern 
et a1 (1988) and Stroud and Ebner (1988). Stroud and Ebner (1988) also discovered the 
possibility of a transition between a spin glass and a ferromagnetic phase within this 
model induced by a sufficiently large magnetic field. 

In these papers several of the properties obtained appear to be in qualitative agree- 
ment with experiment. These include the presence of a spin glass phase on the phase 
diagram with its property of irreversibility, the field dependence of the critical line and 
the temperature dependence of the susceptibility. We add to this list the results of 
experimental papers showing frequency jumps on voltage-temperature plots for varying 
magnetic fields, the jump frequency being largest at low temperatures and disappearing 
at high fields (Cai et a1 1987, Tsai et a1 1987). This seems to be consistent with the 
frustratedXYmode1 picture. Some authors (Cai eta1 1987, Teitel and Jayaprakash 1983) 
have suggested that the effective coupling constant, b,, varies as exp(-pdnlT) where p 
is a constant and dni is the distance between sites n and 1, implying the correct behaviour 
at low temperatures. Experiments on the irreversible magnetisation of the 1-2-3 com- 
pounds have been interpreted as indicating the existence of intrinsic geometrical bound- 
aries for the critical currents, which could be related to the decomposition of these non- 
stoichiometric crystals in regions of high and low oxygen concentration (Sulpice et a1 
1988). This might be used to strengthen our argument for the relationship between the 
doping fraction and the size and separation between the superconducting islands. 

5. Further insights into spatial modulation 

We first assume that f l  and f3 in the free energy are by far the most dominant as 
they define the array of superconducting islands separated by magnetic vortices. This 
structure has been analysed in an earlier paper by Vos et a1 (1990) where it has been 
demonstrated that in the absence of island-island interactions and assuming the magnetic 
induction B ( x )  to have orientation normal to the sample along x ,  the order parameter 
envelope can be expressed as 

17 = (at& k )  + P ) / ( y E ( t x ,  k )  + q (15) 

where CY, /3, y ,  S ,  z are appropriately chosen constants and E is any one of the elliptic 
functions sn, cn or dn. The corresponding vector potential must be linearly related to 7 
for proper compatibility of the equations involved. Therefore, the most important 
conclusion from this analysis is that both the superconducting order parameter’s envel- 
ope 17 and the vector potential A (and hence the magnetic induction B )  may be periodic 
elliptic functions with the same periodicity. To account properly for the Meissner effect 
the two quantities should be phase shifted with respect to each other. Moreover, if the 
effective mass m* is negative then the lowest-energy solution is chosen as the Jacobi cn 
function with the shortest wavelength allowed, i.e. corresponding to the defect/excess 
oxygen mean separation. This then defines the primary (non-topological) structure of 
the superconductor. The inclusion of weak-linked phase interactions can be done 
through the analysis of (7) taken alone with A determined by (6) and (8) as outlined 
above. The solution of (7) in terms of q1 may then be fed back into (6) and (8) as an 
effective dressing term. In particular, we note that the Vy?, terms in (4) are multiplied 
by q2  and therefore can be reinterpreted as redefining the local temperature via the first 
term in (4). More specifically, in regions where V q ,  is large, i.e. at the edges of the ith 
island, the effect will be to diminish the envelope while inside the island the effect will 
be virtually negligible. 



6390 M Otwinowski et a1 

We now analyse (7) in more detail in order to investigate the ordering effect inphase 
space. First of all, we can divide (7) by q 2  assuming that q # 0 as is the case in a 
superconductingregion, and, as alreadystated, use agaugeinwhichv * A = 0. Assuming 
that qo is an integer multiple of 2n, i.e. qo  = 2nn, when b < 0 or has the form q, = 
(2n + 1)n when b > 0, then (7) takes a special form of the sine-lattice equation (Takeno 
and Homma 1986), i.e. 

with g = 0 where U ,  = cp, and is a real dependent variable depending on an island label 
n and an independent variable z found by scaling (7) appropriately. This, of course, is a 
one-dimensional approximation to the problem, which may be of special importance in 
strongly anisotropic situations. The so-called SLO equations, which is (16) with g = 0, 
have been recently studied by Homma (1987) who found that the approximate n- and 
2n-kink solutions are 

sin(u,+l - U,) - sin(u, - U,-') - U, = gsin U, (16) 

2 tan-' (exp(A)) n-kink 

4 tan-'(exp(A)) 2n-kink 
(17) I Uti (A) = 

with A = kx + wz + A. and the q,, is the phase at the nth island at position x where k 
and w satisfy the dispersion relation 

These n-kink solutions have been found to be stable and possess soliton-like qualities 
on collision. The 2n-kinks eventually break up into a pair of oppositely moving n-kinks. 

In the next stage of the development we notice that, assuming a sort of periodicity 
condition, i.e. that each neighbouring phase qr = vq, where v is a constant other than 
unity (in particular, v = -1 if we expect a vortex-antivortex lattice), and with the same 
assumptions as before for qo, equation (7) takes the form of a sine-Gordon equation 
(SGE). Hence 

where Nis  the number of nearest neighbours. The extent of the spatial argument of q n  
is limited to within the nth island. This may be clearly rewritten, by choosing a new 
dependent variable (1 - v ) q ,  = q and scaling the independent variables appropriately, 
as 

w 2  = 4 sinh2(k/2). (18) 

- (h2 /m*)V2q ,  + bNsin(1 - v ) q ,  = O (19) 

V 2 q  = sin q. (20) 

Equation (20) is a two-dimensional, time-independent version of an SGE whose 
standard form represents an integrable non-linear equation. The solutions of the latter 
have been well investigated in the past (see for example Dodd et a1 1982). The multi- 
dimensional SGE has been analysed using the symmetry reduction method by Grundland 
et al(1982). Among the reductions obtained we find two which are also applicable in our 

the quasi-linear variable 5 = (YX + Py and the radial variable 

integration and the most interesting solutions are in the form of 'kinks'. The one-kink 
solution is given by 

More importantly for our purposes an N-kink solution can be found following Caudrey 
et a1 (1975) and takes the form 

where f(6) = det 1 MI and M is the N x N matrix whose elements are 

In the first case a complete set of solutions can be obtained by direct 

(21) q(E) = 4 tan-'(exp E ) .  

q = cos-'[l - 2(d2/dE2) lnf(5)] (22) 



Vortex arrays and ceramic superconductors 6391 

M ,  = [2/(ai + ai)] cosh[(Oi + Oj)/2]. 
The coefficients are ai = -t 1, Oi = * 5 + goi and got is an arbitrary constant. This solution 
represents N well separated kinks with an arbitrary distribution of asymptotic values 
and it could be taken as a global solution to our problem provided it is chosen in such a 
way as to satisfy our initial requirement that rp/ = vrp,. As we shall see later this 
phenomenon is closely related to multiple-stepped staircases. 

The other reduction, q = q ( p ) ,  leads to the equation 

9 , p p  + (l/P)9,p = sin 9, (24) 
which has the same asymptotic behaviour as in the previous case and close to the origin 
it can be conveniently analysed by expanding it about a mean-field solution to obtain a 
Bessel equation. For an in-depth analysis of this equation the reader is referred to a 
recent paper by Malomed (1987). To conclude this short review of the solutions of (20) 
we see that the phase pattern of the array of weak links in the absence of magnetic fields 
can be looked upon as a two-dimensional structure with staircase properties given by 
the arrangement of multi-kink solutions. It should be emphasised that these solutions 
may indeed exhibit periodicity which may or may not be commensurate with the period- 
icity of the underlying islands (order parameter's envelope structure). The interplay 
between these two distinct structures and their periodicities will be the subject of our 
discussion that follows. Obviously, the global solutions obtained here must be eventually 
subjected to the consistency check that 

We now intend to examine (7) with the presence of magnetic fields. Allowing for 
spatial inhomogeneities on going from site n to 1 we may write the argument of the sine 
in (7) as 

so we may approximate and write (7) assuming that dn,. V$, is relatively small as 

= v$, as stipulated earlier. 

(1 - VI@, + dd ' V@,I - @ 0 ( 4  (25) 

where again N is the number of nearest neighbours. On rescaling dependent and 
independent variables we can recast (26) in the form 

where the damping constant y = + p v ( m * N b ) / [ h 2 ( 1  - v)]&. Since @,,(r) is related to 
A ( r ) ,  it basically has the periodicity of the array of islands which is the same as the 
magnetic vortex periodicity (q and A are linearly dependent due to compatibility 
relations used by Vos er a1 1990). Equation (27) is a damped driven SGE and the reader 
is referred to the following papers for details, Lawrence et a1 (1985), Lomdahl (1985), 
Buttiker (1986) and Overman eta1 (1984). The periodicity of the phase field is, of course, 
independent of that of the islands and may or may not be commensurate with it. If it 
happens to be commensurate then the effects of driving, due to @o(r),  and damping (or 
dissipation), due to the term proportional to y,  may be mutually compensating as has 
been described by Eilbeck (1983) and lead to a steady-state kink solution. The motion 
of such a kink solution would be subject to a pinning potential which would have to be 
overcome in order to set the vortex array in motion. The general case of (26), i.e. the 
damped driven SGE, has received considerable attention in the past few years. Largely 
numerical studies indicate a number of interesting phenomena such as the radiation 
effects of SG kinks (Malomed 1987) and perhaps more interestingly a transition to 
stochastic, or indeed chaotic, behaviour (Eilbeck 1983). In a recent letter Olsen er a1 
(1985) reported the existence of pattern selection and the onset of low-dimensional 

V 2 @  = sin@ + ( y  V $  - q0)  cos@ = sin@ + y V @  for @ = 0 (27) 
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chaos in a two-dimensional damped driven SGE. Depending on the strength of the forcing 
term the behaviour of the field undergoes a number of changes including periodic, 
running periodic and chaotic. The glassy behaviour linked previously in the dynamics 
of two-dimensional arrays of Josephson’s junctions (Martinoli et a1 1987) to a com- 
mensurate-incommensurate transition in vortex phases may indeed, in the present 
formulation, be related to the various running periodic and chaotic regimes above. This 
type of behaviour in high-T, materials has been discussed by Deutscher and Muller 
(1987) and Morgenstern et a1 (1988) and studied by Muller et a1 (1987). It may also be 
related to the experiments on thermally activated flux creep (Ebner and Stroud 1985). 
The presence of the commensurate phase may herald flux pinning effects in some high- 
T ,  superconductors (Aeppli et a1 1987, Kes 1988). 

6. Discussion and conclusion 

In this paper we have presented a preliminary description of the onset of coherence in 
high-temperature superconductors in the framework of LG free-energy expansions. We 
have modelled a typical high-temperature superconductor by a quartic expansion in 
terms of the order parameter for each of a set of superconducting islands in the presence 
of vector potentials and including the interactions between neighbouring islands in the 
form of Lawrence-Doniach weak Josephson links. The main idea for island-island 
interaction follows the pioneering work of Deutscher and Muller (1987). We have 
derived the equations of state and discussed the rigime of uncorrelated superconducting 
islands first followed by the inclusion of magnetic field penetration. Finally, with a 
network of superconducting islands forming a square lattice, we have discussed the 
effect of subsequent interactions between the islands. The main conclusion from the first 
part of the development is that the short coherence length and inherent periodicity 
achieved through the doping process may be reconciled theoretically through the concept 
of modulational instability in the system implying the ground state, for high-T, super- 
conductors, is not the mean field but a modulated one (elliptic wave) with its periodicity 
determined mathematically by an elliptic integral and physically by oxygen lattice 
periodicity. With an external magnetic field present a lattice of magnetic vortices is 
envisaged to separate the islands with its cores located at the zeros of the order 
parameter’s envelope. 

Turning our attention to the order parameter’s phases, we have first presented a 
static picture following earlier papers on that topic. A connection has been made with 
the X Y  model and a Kosterlitz-Thouless transition which is predicted to  occur close to 
T ,  and leads to the establishment of an array of vortex-antivortex pairs in the space of 
order parameter phases. These should not be confused with the magnetic vortices and 
indeed the periodicities of the two lattices may not only be different but incommensurate 
with each other. We have subsequently analysed the space modulation of the island 
phase structure and have demonstrated that the relevant equation is closely related to 
the SG equation. As a result, with no magnetic field present, the N-kink SG solution, 
which seems appropriate in our case, may be described by what it has been referred to 
in earlier papers as a sequence of staircase supercurrents. In this case the commensurate 
periodicities of the two lattice structures seem to imply the presence of a pinning 
potential. The application of a magnetic field has been shown to give rise to a damped 
driven SGE with a number of fascinating properties and especially its transition to chaos 
at a certain value of the driving term which derives from the vector potential. Many of 
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the qualitative features found in our model appear to be exhibited by experimental 
results. These include a glass-like behaviour (or even the existence of a spin glass phase), 
flux pinning and flux creep phenomena. With the presence of damping in the SGE there 
may be a critical value of the mean distance between neighbouring islands (directly 
related to both the temperature and the oxygen stoichiometry parameter) below which 
Josephson tunnelling may take place, leading to the onset of bulk superconductivity as 
opposed to just the presence of superconducting nucleation centres. We intend to 
investigate this in future studies which may give insight concerning the phase diagram 
of these high-T, superconductors. 
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